
ar
X

iv
:1

70
3.

06
32

2v
1 

 [
cs

.C
R

] 
 1

8 
M

ar
 2

01
7

An empirical analysis of smart contracts:

platforms, applications, and design patterns

Massimo Bartoletti and Livio Pompianu

Università degli Studi di Cagliari, Cagliari, Italy
{bart,livio.pompianu}@unica.it

Abstract. Smart contracts are computer programs that can be consis-
tently executed by a network of mutually distrusting nodes, without the
arbitration of a trusted authority. Because of their resilience to tamper-
ing, smart contracts are appealing in many scenarios, especially in those
which require transfers of money to respect certain agreed rules (like
in financial services and in games). Over the last few years many plat-
forms for smart contracts have been proposed, and some of them have
been actually implemented and used. We study how the notion of smart
contract is interpreted in some of these platforms. Focussing on the two
most widespread ones, Bitcoin and Ethereum, we quantify the usage of
smart contracts in relation to their application domain. We also analyse
the most common programming patterns in Ethereum, where the source
code of smart contracts is available.

1 Introduction

Since the release of Bitcoin in 2009 [40], the idea of exploiting its enabling tech-
nology to develop applications beyond currency has been receiving increasing
attention [26]. In particular, the public and append-only ledger of transaction
(the blockchain) and the decentralized consensus protocol that Bitcoin nodes
use to extend it, have revived Nick Szabo’s idea of smart contracts — i.e. pro-
grams whose correct execution is automatically enforced without relying on
a trusted authority [47]. The archetypal implementation of smart contracts is
Ethereum [28], a platform where they are rendered in a Turing-complete lan-
guage. The consensus protocol of Ethereum ensures that all and only the valid
updates to the contract states are recorded on the blockchain, so ensuring their
correct execution.

Besides Bitcoin and Ethereum, a remarkable number of alternative platforms
have flourished over the last few years, either implementing crypto-currencies
or some forms of smart contracts [1, 7, 9, 30, 37]. For instance, the number of
crypto-currencies hosted on coinmarketcap.com has increased from 0 to more
than 600 since 2012; the number of github projects related to blockchains and
smart contracts has reached, respectively, 2, 715 and 445 units (see Figure 1).
In the meanwhile, ICT companies and some national governments have started
dealing with these topics [41, 48], also with significant investments.

http://arxiv.org/abs/1703.06322v1
http://coinmarketcap.com/
http://github.com


2 Bartoletti M., Pompianu, L.

0
5
.2

0
1
3

1
2
.2

0
1
3

0
6
.2

0
1
4

0
1
.2

0
1
5

0
7
.2

0
1
5

0
1
.2

0
1
6

0
7
.2

0
1
6

0
1
.2

0
1
7

0

200

400

600

Time interval

N
u
m
b
er

o
f
cu

rr
en

ci
es

Crypto-Currencies

0
1
.2

0
1
2

0
7
.2

0
1
2

0
2
.2

0
1
3

0
8
.2

0
1
3

0
3
.2

0
1
4

0
9
.2

0
1
4

0
4
.2

0
1
5

1
1
.2

0
1
5

0
5
.2

0
1
6

1
2
.2

0
1
6

0

50

100

150

200

250

Time interval

N
u
m
b
er

o
f
p
ro
je
ct
s

Blockchain

Smart Contract

Fig. 1: On the left, monthly trend of the number of crypto-Currencies hosted on
coinmarketcap.com. On the right, number of new projects related to blockchains
and smart contracts which are created every month on github.com.

Despite the growing hype on blockchains and smart contracts, the under-
standing of the actual benefits of these technologies, and of their trustworthiness
and security, has still to be assessed. In particular, the consequences of unsafe
design choices for the programming languages for smart contracts can be fatal, as
witnessed by the unfortunate epilogue of the DAO contract [13], a crowdfunding
service plundered of ∼ 50M USD because of a programming error. Since then,
many other vulnerabilities in smart contract have been reported [12, 14, 18, 37].

Understanding how smart contracts are used and how they are implemented
could help designers of smart contract platforms to create new domain-specific
languages (not necessarily Turing complete [27,29,33,42]), which by-design avoid
vulnerabilities as the ones discussed above. Further, this knowledge could help
to improve analysis techniques for smart contracts (like e.g. the ones in [25,37]),
by targeting contracts with specific programming patterns.

Contributions. This paper is a methodic survey on smart contracts, with a
focus on Bitcoin and Ethereum — the two most widespread platforms currently
supporting them. Our main contributions can be summarised as follows:

– in Section 2 we examine the Web for news about smart contracts in the
period from June 2013 to September 2016, collecting data about 12 plat-
forms. We choose from them a sample of 6 platforms which are amenable
to analytical investigation. We analyse and compare several aspects of the
platforms in this sample, mainly concerning their usage, and their support
for programming smart contracts.

– in Section 3 we propose a taxonomy of smart contracts, sorting them into cat-
egories which reflect their application domain. We collect from the blockchains
of Bitcoin and Ethereum a sample of 834 smart contracts, which we classify
according to our taxonomy. We then study the usage of smart contracts,
measuring the distribution of their transactions by category. This allows us

http://coinmarketcap.com/
http://github.com


An empirical analysis of smart contracts 3

to compare the different usage of Bitcoin and Ethereum as platforms for
smart contracts.

– in Section 4 we consider the source code of the Ethereum contracts in our
sample. We identify 9 common design patterns, and we quantify their usage
in contracts, also in relation to the associated category. Together with the
previous point, ours constitutes the first quantitative investigation on the
usage and programming of smart contract in Ethereum.

All the data collected by our survey are availble online at: goo.gl/pOswL8.

2 Platforms for smart contracts

In this section we analyse various platforms for smart contracts. We start by
presenting the methodology we have followed to choose the candidate platforms
(Section 2.1). Then we describe the key features of each platform, pinpointing
differences and similarities, and drawing some general statistics (Section 2.2).

2.1 Methodology

To choose the platforms subject of our study, we have drawn up a candidate
list by examining all the articles of coindesk.com in the “smart contracts” cat-
egory1. Starting from June 2013, when the first article appeared, up to the 15th
of September 2016, 175 articles were published, describing projects, events, com-
panies and technologies related to smart contracts and blockchains. By manually
inspecting all these articles, we have found references to 12 platforms: Bitcoin,
Codius, Counterparty, DAML, Dogeparty, Ethereum, Lisk, Monax, Rootstock,
Symbiont, Stellar, and Tezos.

We have then excluded from our sample the platforms which, at the time
of writing, do not satisfy one of the following criteria: (i) have already been
launched, (ii) are running and supported from a community of developers, and (iii)
are publicly accessible. For the last point we mean that, e.g., it must be possible
to write a contract and test it, or to explore the blockchain through some tools,
or to run a node. We have inspected each of the candidate platforms, examining
the related resources available online (e.g., official websites, white-papers, forum
discussions, etc.) After this phase, we have removed 6 platforms from our list:
Tezos and Rootstock, as they do not satisfy condition (i); Codius and Dogeparty,
which violate condition (ii), DAML and Symbiont, which violate (iii). Summing
up, we have a sample of 6 platforms: Bitcoin, Ethereum, Counterparty, Stellar,
Monax and Lisk, which we discuss in the following.

2.2 Analysis of platforms

We now describe the general features of the collected platforms, focussing on:
(i) whether the platform has its own blockchain, or if it just piggy-backs on an

1 http://www.coindesk.com/category/technology/smart-contracts-news

https://goo.gl/pOswL8
http://www.coindesk.com
http://www.coindesk.com/category/technology/smart-contracts-news


4 Bartoletti M., Pompianu, L.

already existing one; (ii) for platforms with a public blockchain, their consensus
protocol, and whether the blockchain is public or private to a specific set of
nodes; (iii) the languages used to write smart contracts.

Bitcoin [40] is a platform for transferring digital currency, the bitcoins (BTC).
It has been the first decentralized cryptocurrency to be created, and now is
the one with the largest market capitalization. The platform relies on a public
blockchain to record the complete history of currency transactions. The nodes
of the Bitcoin network use a consensus algorithm based moderately hard “proof-

of-work” puzzles to establish how to append a new block of transactions to the
blockchain. Nodes work in competition to generate the next block of the chain.
The first node that solves the puzzle earns a reward in BTC.

Although the main goal of Bitcoin is to transfer currency, the immutability
and openness of its blockchain have inspired the development of protocols that
implement (limited forms of) smart contracts. Bitcoin features a non-Turing
complete scripting language, which allows to specify under which conditions a
transaction can be redeemed. The scripting language is quite limited, as it only
features some basic arithmetic, logical, and crypto operations (e.g., hashing and
verification of digital signatures). A further limitation to its expressiveness is
the fact that only a small fraction of the nodes of the Bitcoin network processes
transactions whose script is more complex than verifying a signature2.

Ethereum [28] is the second platform for market capitalization, after Bitcoin.
Similarly to Bitcoin, it relies on a public blockchain, with a consensus algorithm
similar to that of Bitcoin3. Ethereum has its own currency, caller ether (ETH).
Smart contracts are written in a stack-based bytecode language [49], which is
Turing-complete, unlike Bitcoin’s. There also exist a few high level languages
(the most prominent being Solidity4), which compile into the bytecode language.
Users create contracts and invoke their functions by sending transactions to the
blockchain, whose effects are validated by the network. Both users and contracts
can store money and send/receive ETH to other contracts or users.

Counterparty [32] is a platform without its own blockchain; rather, it embeds
its data into Bitcoin transactions. While the nodes of the Bitcoin network ignore
the data embedded in these transactions, the nodes of Counterparty recognise
and interpret them. Smart contracts can be written in the same language used
by Ethereum. However, unlike Ethereum, no consensus protocol is used to val-
idate the results of computations5. Counterparty has its own currency, which
can be transferred between users, and be spent for executing contracts. Unlike

2 As far as we know, currently only the Eligius mining pool accepts more general
transactions (called non-standard in the Bitcoin community). However, this pool
only mines ∼ 1% of the total mined blocks [20].

3 The consensus mechanism of Ethereum is a variant of the GHOST protocol in [46].
4 Solidity: http://solidity.readthedocs.io/en/develop/index.html
5 See FAQ: How do Smart Contracts “form a consensus” on Counterparty?
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counter

http://solidity.readthedocs.io/en/develop/index.html
http://counterparty.io/docs/faq-smartcontracts/#how-do-smart-contracts-form-a-consensus-on-counterparty


An empirical analysis of smart contracts 5

Ethereum, nodes do not obtain fees for executing contracts; rather, the fees paid
by clients are destroyed, and nodes are indirectly rewarded from the inflation of
the currency. This mechanism is called proof-of-burn.

Stellar [10] features a public blockchain with its own cryptocurrency, governed
by a consensus algorithm inspired to federated Byzantine agreement [11]. Basi-
cally, a node agrees on a transaction if the nodes in its neighbourhood (that are
considered more trusted than the others) agree as well. When the transaction
has been accepted by enough nodes of the network, it becomes unfeasible for an
attacker to roll it back, and it is considered as confirmed. Compared to proof-of-

work, this protocol consumes far less computing power, since it does not involve
solve cryptographic puzzles. Unlike Ethereum, there is no specific language for
smart contracts; still, it is possible to gather together some transactions (pos-
sibly ordered in a chain) and write them atomically in the blockchain. Since
transactions in a chain can involve different addresses, this feature can be used
to implement basic smart contracts. For instance, assume that a participant A
wants to pay B only if B promises to pay C after receiving the payment from A.
This behaviour can be enforced by putting these transactions in the same chain.
While this specific example can be implemented on Bitcoin as well, Stellar also
allows to batch operations different from payments6, e.g. creating new accounts.
Stellar features special accounts, called multisignature, which can be handled by
several owners. To perform operations on these accounts, a threshold of consen-
sus must be reached among the owners. Transaction chaining and multisignature
accounts can be combined to create more complex contracts.

Monax [8] supports the execution of Ethereum contracts, without having its
own currency. Monax allows users to create private blockchains, and to define
authorisation policies for accessing them. Its consensus protol7 is organised in
rounds, where a participant proposes a new block of transactions, and the others
vote for it. When a block fails to be approved, the protocol moves to the next
round, where another participant will be in charge of proposing blocks. A block
is confirmed when it is approved by at least 2/3 of the total voting power.

Lisk [6] has its own currency, and a public blockchain with a delegated proof-

of-stake consensus mechanism8. More specifically, 101 active delegates, each one
elected by the stakeholders, have the authority to generate blocks. Stakeholders
can take part to the electoral process, by placing votes for delegates in their
favour, or by becoming candidates themselves. Lisk supports the execution of
Turing-complete smart contracts, written either in JavaScript or in Node.js. Un-
like Ethereum, determinism of executions is not ensured by the language: rather,
programmers must take care of it, e.g. by not using functions like Math.random.
Although Lisk has a main blockchain, each smart contract is executed on a
separated one. Users can deposit or withdraw currency from a contract to the

6 https://www.stellar.org/developers/guides/concepts/operations.html
7 https://tendermint.com/
8 https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook

https://www.stellar.org/developers/guides/concepts/operations.html
https://tendermint.com/
https://lisk.io/documentation?i=lisk-handbooks/DelegateHandbook


6 Bartoletti M., Pompianu, L.

Platform
Blockchain

Contract Language Total Tx
Volume Marketcap

Type Size Block int. (K USD) (M USD)

Bitcoin
Public 96 GB 10 min.

Bitcoin scripts + signatures 184,045,240 83,178 15,482
Counterparty EVM bytecode 12,170,386 33 4

Ethereum Public 17-60 GB 12 sec. EVM bytecode 14,754,984 10,354 723

Stellar Public ? 3 sec. Transaction chains + signatures ? 35 17

Monax Private ? Custom EVM bytecode + permissions ? n/a n/a

Lisk Private ? Custom JavaScript ? 45 15

Table 1: General statistics of platforms for smart contracts.

main chain, while avoiding double spending. Contract owners can customise
their blockchain before deploying their contracts, e.g. choosing which nodes can
participate to the consensus mechanism.

Table 1 summarizes the main features of the analysed platforms. The question
mark in some of the cells indicates that we were unable to retrieve the informa-
tion (e.g., we have not been able to determine the size of Monax blockchains,
since they are private). The first three columns next to the platform name de-
scribe features of the blockchain: whether it is public; its size; the average time
between two consecutive blocks. Note that Bitcoin and Counterparty share the
same cell, since the second platform uses the Bitcoin blockchain. Measuring
the size of the Ethereum blockchain depends on which client and which prun-
ing mode is used. For instance, using the Geth client, we obtain a measure of
17GB in “fast sync” mode, and of 60GB in “archive” mode9. In platforms with
private blockchains, their block interval is custom. The fifth column describes
the support for writing contracts. The sixth column shows the total number of
transactions10. The last two columns show the daily volume of currency tranfers,
and the market capitalisation of the currency (both in USD, rounded, respec-
tively, to thousands and millions)11. All values reported on Table 1 are updated
to January 1st, 2017.

3 Analysing the usage of smart contracts

In this section we analyse the usage of smart contracts, proposing a classifi-
cation which reflects their application domain. Then, focussing on Bitcoin and
Ethereum, we quantify the usage of smart contracts in relation to their appli-
cation domain. We start by presenting the methodology we have followed to
sample and classify Bitcoin and Ethereum smart contracts (Section 3.1). Then,
we introduce our classification and our statistical analysis (Sections 3.2 and 3.3).

9 https://redd.it/5om2lw
10 Sources: https://blockchain.info/charts/n-transactions-total (for Bitcoin),

https://blockscan.com (Counterparty), and https://etherscan.io (Ethereum).
11 Market capitalization estimated by http://coinmarketcap.com.

https://github.com/ethereum/go-ethereum/wiki/geth
https://redd.it/5om2lw
https://blockchain.info/charts/n-transactions-total
https://blockscan.com
https://etherscan.io
http://coinmarketcap.com


An empirical analysis of smart contracts 7

3.1 Methodology

We sample contracts from Bitcoin and Ethereum as follows:

– for Ethereum, we collect on January 1st, 2017 all the contracts marked as
“verified” on the blockchain explorer etherscan.io. This means that the
contract bytecode stored on the blockchain matches the source code (gen-
erally written in a high level language, such as Solidity) submitted to the
explorer. In this way, we obtain a sample of 811 contracts.

– for Bitcoin, we start by observing that many smart contracts save their
metadata on the blockchain through the OP RETURN instruction of the
Bitcoin scripting language [1,2,7,23]. We then scan the Bitcoin blockchain on
January 1st 2017, searching for transactions that embed in an OP RETURN
some metadata attributable to a Bitcoin smart contract. To this purpose we
use an explorer12 which recognises 23 smart contracts, and extracts all the
transactions related to them.

3.2 A taxonomy of smart contracts

We propose a taxonomy of smart contracts into five categories, which describe
their intended application domain. We then classify the contracts in our sample
according to the taxonomy. To this purpose, for Ethereum contracts we manually
inspect the Solidity source code, while for Bitcoin contracts we search their
web pages and related discussion forums. After this manual investigation, we
distribute all the contracts into the five categories, that we present below.

Financial. Contracts in this category manage, gather, or distribute money as
preeminent feature. Some contracts certify the ownership of a real-world as-
set, endorse its value, and keep track of trades (e.g., Colu currently tracks
over 50,000 assets on Bitcoin). Other contracts implement crowdfunding
services, gathering money from investors in order to fund projects (the
Ethereum DAO project was the most representative one, until its collapse
due to an attack in June 2016). High-yield investment programs are a type of
Ponzi schemes [22] that collect money from users under the promise that they
will receive back their funds with interest if new investors join the scheme
(e.g., Government, KingOfTheEtherThrone). Some contracts provide an in-
surance on setbacks which are digitally provable (e.g., Etherisc sells insurance
policies for flights; if a flight is delayed or cancelled, one obtains a refund).
Other contracts publish advertisement messages (e.g., PixelMap is inspired
to the Million Dollar Homepage).

Notary. Contracts in this category exploit the immutability of the blockchain to
store some data persistently, and in some cases to certify their ownership and
provenance. Some contracts allow users to write the hash of a document on
the blockchain, so that they can prove document existence and integrity (e.g.,
Proof of Existence). Others allow to declare copyrights on digital arts files,

12 https://github.com/BitcoinOpReturn/OpReturnTool

https://etherscan.io/contractsVerified
http://coloredcoins.org/explorer/
https://forum.daohub.org/
http://governmental.github.io/GovernMental/
https://www.kingoftheether.com/
https://fdi.etherisc.com/
http://pixelmap.io/
https://en.wikipedia.org/wiki/The_Million_Dollar_Homepage
https://proofofexistence.com/
https://github.com/BitcoinOpReturn/OpReturnTool


8 Bartoletti M., Pompianu, L.

Category Platform Contracts Transactions

Financial
Bitcoin 6 470,391

Ethereum 373 624,046

Notary
Bitcoin 17 443,269

Ethereum 79 35,253

Game
Bitcoin 0 0

Ethereum 158 58,257

Wallet
Bitcoin 0 0

Ethereum 17 1,342

Library
Bitcoin 0 0

Ethereum 29 37,034

Unclassified
Bitcoin 0 0

Ethereum 155 3,679

Total

Bitcoin 23 913,660
Ethereum 811 759,611
Overall 834 1,673,271

Table 2: Transactions by category.

like photos or music (e.g., Monegraph). Some contracts (e.g., Eternity Wall)
just allow users to write down on the blockchain messages that everyone
can read. Other contracts associate users to addresses (often represented as
public keys), in order to certify their identity (e.g., Physical Address).

Game. This category gathers contracts which implement games of chance (e.g.,
LooneyLottery, Dice, Roulette, RockPaperScissors) and games of skill (e.g.,
Etherization), as well as some games which mix chance and skill (e.g., PRNG
challenge pays for the solution of a puzzle).

Wallet. The contracts in this category handle keys, send transactions, manage
money, deploy and watch contracts, in order to simplify the interaction with
the blockchain. Wallets can be managed by one or many owners, in the latter
case requiring multiple authorizations (like, e.g. in Multi-owned).

Library. These contracts implement general-purpose operations (like e.g., math
and string transformations), to be used by other contracts.

3.3 Quantifying the usage of smart contracts by category

We analyse all the transactions related to the 834 smart contracts in our sample.
Table 2 displays how the transactions are distributed in the categories of Sec-
tion 3.2. For both Bitcoin and Ethereum, we show the number of detected con-
tracts (third column), and the total number of transactions (fourth column).

Overall, we have 1,673,271 transactions. Notably, although Bitcoin contracts
are fewer than those running on Ethereum, they have a larger amount of transac-
tions each. A clear example of this is witnessed by the financial category, where
6 Bitcoin contracts13 totalize two thirds of the transactions published by the 373
Ethereum contracts in the same category.

13 Bitcoin financial contracts: Colu, CoinSpark, OpenAssets, Omni, SmartBit, BitPos.

https://monegraph.com/
https://eternitywall.it/
https://proofofphysicaladdress.com/
https://etherscan.io/address/0x2ef76694fBfD691141d83F921A5ba710525De9B0#code
https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x18a672e11d637fffadccc99b152f4895da069601#code
https://etherscan.io/address/0x1d77340D3819007BbfD7fdD37C22BD3b5c311350#code
http://www.bspend.com/etherization
https://etherscan.io/address/0x4ed65e408439a7f6459b5cfbd364f373bd6ed5f7#comments
https://etherscan.io/address/0xA2D4035389aae620E36Bd828144b2015564C2702#code
https://www.colu.com/
http://coinspark.org/
https://github.com/OpenAssets
http://www.omnilayer.org/
https://www.smartbit.com.au/
https://bitpos.me/


An empirical analysis of smart contracts 9

Financial Notary Wallet Game Library Unclassified

0

20

40

60

80
Bitcoin Ethereum Overall

Fig. 2: Distribution of transactions by category.

While both Bitcoin and Ethereum are mainly focussed on financial contracts,
we observe major differences about the other categories. For instance, the Bitcoin
contracts in the Notary category14 have an amount of transactions similar to that
of the Financial category, unlike in Ethereum. The second most used category
in Ethereum is Game. Although some games (e.g., lotteries [16, 17, 19, 24] and
poker [36]) which run on Bitcoin have been proposed in the last few years,
the interest on them is still mainly academic, and we have no experimental
evidence that these contracts are used in practice. Instead, the greater flexibility
of the Ethereum programming language simplifies the development of this kind
of contracts (although with some quirks [31] and limitations15).

Note that in some cases there are not enough elements to categorise a con-
tract. This happens e.g., when the contract does not link to the project webpage,
and there are neither comments in online forums nor in the contract sources.

4 Design patterns for Ethereum smart contracts

In this section we study design patterns for Ethereum smart contracts. To this
purpose, we consider the sample of 811 contracts collected through the method-
ology described in Section 3. By manually inspecting the Solidity source code
of each of these contracts, we identify some common design patterns. We start
in Section 4.1 by describing these patterns. Then, in Section 4.2 we measure the
usage of the patterns in the various categories of contracts identified in Section 3.

14 Bitcoin notary contracts: Factom, Stampery, Proof of Existence, Blocksign, Crypto-
Copyright, Stampd, BitProof, ProveBit, Remembr, OriginalMy, LaPreuve, Nicosia,
Chainpoint, Diploma, Monegraph, Blockai, Ascribe, Eternity Wall, Blockstore.

15 Although the Ethereum virtual machine is designed to be Turing-complete, in prac-
tice the limitations on the amount of gas which can be used to invoke contracts also
limit the set of computable functions (e.g., verifying checkmate exceeds the current
gas limits of a transaction [35]).

https://www.factom.com/
https://stampery.com/
https://proofofexistence.com/
https://blocksign.com/
https://crypto-copyright.com/
https://stampd.io/
https://bitproof.io/
https://github.com/thereal1024/ProveBit
https://remembr.io/
https://originalmy.com/
http://lapreuve.eu/explication.html
http://digitalcurrency.unic.ac.cy/free-introductory-mooc/academic-certificates-on-the-blockchain/
http://www.chainpoint.org/
http://diploma.report/
https://monegraph.com/
https://blockai.com/
https://www.ascribe.io
https://eternitywall.it/
https://github.com/blockstack/blockchain-id/wiki/Blockstore


10 Bartoletti M., Pompianu, L.

4.1 Design patterns

Token. This pattern is used to distribute some fungible goods (represented by
tokens) to users. Tokens can represent a wide variety of goods, like e.g.
coins, shares, outcomes or tickets, or everything else which is transferable
and countable. The implications of owning a token depend on the protocol
and the use case for which the token has been issued. Tokens can be used to
track the ownership of physical properties (e.g., gold [3]), or digital ones (e.g.,
cryptocurrency). Some crowdfunding systems issue tokens in exchange for
donations (e.g., the Congress contract). Tokens are also used to regulate user
authorizations and identities. For instance, the DVIP contract specifies rights
and term of services for owners of its tokens. To vote on the poll ETCSurvey,
users must possess a suitable token. Given the popularity of this pattern, its
standardisation has been proposed [5]. Notably, the majority of the analysed
Ethereum contracts which issue tokens already adhere to it.

Authorization. This pattern is used to restrict the execution of code accord-
ing to the caller address. The majority of the analysed contracts check if the
caller address is that of the contract owner, before performing critical opera-
tions (e.g., sending ether, invoking suicide or selfdestruct). For instance, the
owner of Doubler is authorized to move all funds to a new address at any

time (this may raise some concerns about the trustworthiness of the contract,
as a dishonest owner can easily steal money). Corporation checks addresses
to ensure that every user can vote only once per poll. CharlyLifeLog uses a
white-list of addresses to decide who can withdraw funds.

Oracle. Some contracts may need to acquire data from outside the blockchain,
e.g. from a website, to determine the winner of a bet. The Ethereum language
does not allow contracts to query external sites: otherwise, the determinism
of computations would be broken, as different nodes could receive different
results for the same query. Oracles are the interface between contracts and
the outside. Technically, they are just contracts, and as such their state can
be updated by sending them transactions. In practice, instead of querying an
external service, a contract queries an oracle; and when the external service
needs to update its data, it sends a suitable transaction to the oracle. Since
the oracle is a contract, it can be queried from other contracts without
consistency issues. One of the most common oracles is Oraclize16: in our
sample, it is used by almost all the contracts which resort to oracles.

Randomness. Dealing with randomness is not a trivial task in Ethereum. Since
contract execution must be deterministic, all the nodes must obtain the same
value when asking for a random number: this struggles with the random-
ness requirements wished. To address this issue, several contracts (e.g., Slot)
query oracles that generate these values off-chain. Others (e.g., Lottery) try
to generate the numbers locally, by using values not predictable a priori,
as the hash of a block not yet created. However, these techniques are not
generally considered secure [18].

16 http://www.oraclize.it/

https://etherscan.io/address/0xe0b7927c4af23765cb51314a0e0521a9645f0e2a#code
https://etherscan.io/address/0x815a46107e5ee2291a76274dc879ce947a3f0850#code
https://etherscan.io/address/0xfb6916095ca1df60bb79ce92ce3ea74c37c5d359#code
https://etherscan.io/address/0xadc46ff5434910bd17b24ffb429e585223287d7f#code
https://etherscan.io/address/0xdb6d68e1d8c3f69d32e2d83065492e502b4c67ba#code
https://etherscan.io/address/0x3fccb426c33b1ae067115390354b968592348d05#code
https://etherscan.io/address/0x8b4aa759d83ec43efba755fc27923e4a581bccc1#code
https://etherscan.io/address/0xdc84953D7C6448e498Eb3C33ab0F815da5D13999#code
https://etherscan.io/address/0x684282178b1d61164febcf9609ca195bef9a33b5#code
https://etherscan.io/address/0x5A5eFF38DA95b0D58b6C616f2699168B480953C9#code
https://etherscan.io/address/0x76bc9e61a1904b82cbf70d1fd9c0f8a120483bbb#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
http://www.oraclize.it/


An empirical analysis of smart contracts 11

Token Auth. Oracle Random. Poll Time Termin. Fork Math None

Financial 24-51 51-39 2-15 1-2 5-29 23-31 14-30 8-69 4-47 29-66
Notary 13-6 52-9 1-2 0-0 8-9 20-6 29-13 0-0 1-3 30-15
Game 3-3 84-27 25-74 72-93 25-57 73-43 21-19 1-3 2-9 1-1
Wallet 18-2 100-3 0-0 0-0 0-0 94-6 100-10 0-0 12-6 0-0
Library 0-0 31-2 0-0 14-3 0-0 24-3 24-4 34-24 21-19 17-3

Unclassified 43-39 66-21 3-9 1-1 3-6 18-10 28-25 28-25 1-5 15-15
Total 21-100 61-100 7-100 15-100 9-100 33-100 22-100 5-100 4-100 20-100

Table 3: Relations between design patterns and contract categories. A pair (p, q)
at row i and column j means that p% of the contracts in category i use the
pattern of column j, and q% of contracts with pattern j belong to category i.

Poll. Polls allows users to vote on some question. Often this is a side feature
in a more complex scenario. For instance, in the Dice game, when a certain
state is reached, the owner issues a poll to decide whether an emergency
withdrawal is needed. To determine who can vote and to keep track of the
votes, polls can use tokens, or they can check the voters’ addresses.

Time constraint. Many contracts implement time constraints, e.g. to spec-
ify when an action is permitted. For instance, BirthdayGift allows users to
collect funds, which will be redeemable only after their birthday. In notary
contracts, time constraints are used to prove that a document is owned from
a certain date. In game contracts, e.g. Lottery, time constraints mark the
stages of the game.

Termination. Since the blockchain is immutable, a contract cannot be deleted
when its use has come to an end. Hence, developers must forethink a way
to disable it, so that it is still present but unresponsive. This can be done
manually, by inserting ad-hoc code in the contract, or automatically, calling
selfdestruct or suicide. Usually, only the contract owner is authorized
to terminate a contract (e.g., as in SimpleCoinFlipGame).

Math. Contracts using this pattern encode the logic which guards the execution
of some critical operations. For instance, Badge implements a method named
subtractSafely to avoid subtracting a value from a balance when there are
not enough funds in an account.

Fork check. The Ethereum blockchain has been forked four times, starting
from July 20th, 2016, when a fork was performed to contrast the effect of
the DAO attack [4]. To know whether or not the fork took place, some
contracts inspect the final balance of the DAO. Other contracts use this
check to detect whether they are running on the main chain or on the fork,
performing different actions in the two cases. AmIOnTheFork is a library
contract that can be used to distinguish the main chain from the forked one.

https://etherscan.io/address/0x2AB9f67A27f606272189b307052694D3a2B158bA#code
https://etherscan.io/address/0x9828f591b21ee4ad4fd803fc7339588cb83a6b84#code
https://etherscan.io/address/0x302fE87B56330BE266599FAB2A54747299B5aC5B#code
https://etherscan.io/address/0xe941e5d4a66123dc74886699544fbbb942f1887a#code
https://etherscan.io/address/0x54bda709fed875224eae569bb6817d96ef7ed9ad#code
https://etherscan.io/address/0x2bd2326c993dfaef84f696526064ff22eba5b362#code


12 Bartoletti M., Pompianu, L.

4.2 Quantifying the usage of design patterns by category

We now study how the design patterns identified in Section 4.1 are used in
smart contracts. Out of the 811 analysed contracts, 648 use at least one of the
9 patterns presented, for a grand total of 1427 occurrences of usage.

Table 3 shows the correlation between the usage of design patterns and con-
tract categories, as defined in Section 3. A cell at row i and column j shows a
pair of values: the first value is the percentage of contracts of category i that
use the pattern of column j; the second one is the percentage of contracts with
pattern j which belongs to category i. So, for instance, 24% of the contracts in
the financial category use the token pattern, and 51% of all the contracts with
the token pattern are financial ones.

We observe that token, authorization, time constraint, and termination are
generally the most used patterns. Some patterns are spread across several cate-
gories (e.g., termination and time constraint), while others are mainly adopted
only in one. For instance, oracle and randomness patterns are peculiar of game
contracts, while the token pattern is mostly used in financial contracts. Although
math is the less used, it appears in each category. Some contracts do not use any
pattern (29% of financial and 30% of notary); almost all the contracts in game
and wallet categories uses at least one. Further, only 15% of all the unclassified
contracts do no use any pattern at all.

The most frequent patterns in financial contracts are token (24%), authoriza-
tion (51%), and time constraint (23%). Due to the presence of contracts which
implement assets and crowdfunding services, we have that half of contracts using
token andmath patterns belong to the financial category. For instance, these ser-
vices use token for representing goods or developing polls. Moreover, a great 69%
of contracts that use the fork check pattern is financial. This is caused by the ne-
cessity of knowing the branch of the fork before deciding to move funds. Finally,
several financial applications (29%) perform simple operations (e.g. sending a
payment) without using any of our described patterns.

The authorization pattern is used in many notary contracts to ensure that
only the owner of a document can add or modify its data, in order to avoid
tampering. Most gambling games involve players who pay fees to join the game,
and rewards that can be collected by the winner of the game. The authorization
pattern is used to let the owner to be the only one able to redeem participants’
fees or to perform administrative operations, and to let the winner withdraw his
reward. The time constraint pattern is used to distinguish the different phases
of the game. For instance, within a specific time interval players can join the
game and/or bet; then, bets are over, and the game determines a winner. To
choose the winner, some gambling games resort to random numbers, which are
often generated through an oracle. Indeed, 25% of games use the oracle pattern,
and the pattern itself is used 74% of cases by a game contract. Since all game
contracts invoking an oracle (25%) ask for random values, and since 72% of
contracts use the random pattern, we can deduce that 47% of them generate
random numbers without resorting to oracles.



An empirical analysis of smart contracts 13

Notably, 100% of wallet contracts adopt both authorization and termination

design patterns. A high 94% also uses time constraint. On the contrary, oracle,
poll, and randomness patterns are of little use when developing a wallet, while
math is sometimes used for securing operations on the balance.

5 Conclusions

We have analysed the usage of smart contracts from various perspectives. In Sec-
tion 2 we have examined a sample of 6 platforms for smart contracts, pinpointing
some crucial technical differences between them. For the two most prominent
platforms — Bitcoin and Ethereum — we have studied a sample of 834 con-
tracts, categorizing each of them by its application domain, and measuring the
relevance of each of these categories (Section 3). The availability of source code
for Ethereum contracts has allowed us to analyse the most common design pat-
terns adopted when writing smart contracts (Section 4).

We believe that this survey may provide valuable information to developers
of new, domain-specific languages for smart contracts. In particular, measuring
what are the most common use cases allows to understand which domains deserve
more investments. Furthermore, our study of the correlation between design
patterns and application domains can be exploited to drive the correct choice of
programming primitives of domain-specific languages for smart contracts.

Due to the mixed flavour of our analysis, which compares differents plat-
forms and studies how smart contracts are interpreted on each them, our work
relates to various topics. The work [38] proposes design patterns for altering
and undoing of smart contracts; so far, our analysis in Section 4.2 has not still
found instances of these patterns in Ethereum. Among the works which study
blockchain technologies, [15] compares four blockchains, with a special focus on
the Ethereum one; [45] examines a larger set of blockchains, including also some
which does not fit the criteria we have used in our methodology (e.g., RootStock
and Tezos). Many works on Bitcoin perform empirical analyses of its blockchain.
For instance, [43, 44] study users deanonymization, [39] measures transactions
fees, and [21] analyses Denial-of-Service attacks on Bitcoin. The work [34] inves-
tigates whether Bitcoin users are interested more on digital currencies as asset
or as currency, with the aim of detecting the most popular use cases of Bit-
coin contracts, similarly to what we have done in Section 3.3. Our classification
of Bitcoin protocols based on OP RETURN transactions is inspired from [23],
which also measures the space consumption and temporal trend of OP RETURN
transactions.

Recently, some authors have started to analyse the security of Ethereum
smart contracts: among these, [18] surveys vulnerabilities and attacks, while [37]
and [25] propose analysis techniques to detect them. Our study on design pat-
terns for Ethereum smart contracts could help to improve these techniques, by
targeting contracts with specific programming patterns.



14 Bartoletti M., Pompianu, L.

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
project P.I.A. 2013 “NOMAD”.

References

1. Bitcoin contract, https://en.bitcoin.it/wiki/Contract. Last accessed
2017/01/14

2. Bitcoin OP RETURN wiki page, https://en.bitcoin.it/wiki/OP_RETURN. Last
accessed 2017/01/14

3. Dgx website, https://www.dgx.io/. Last accessed 2017/01/14
4. Ethereum hard fork 20 july 2016, https://blog.ethereum.org/2016/07/20/hard-fork-completed/.

Last accessed 2017/01/14
5. Ethereum request for comment 20, https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs.

Last accessed 2017/01/14
6. Lisk, https://lisk.io/. Last accessed 2017/01/14
7. Making sense of blockchain smart contracts,

http://www.coindesk.com/making-sense-smart-contracts/. Last accessed
2017/01/14

8. Monax, https://monax.io/. Last accessed 2017/01/14
9. Smart contracts: The good, the bad and the lazy,

http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/.
Last accessed 2017/01/14

10. Stellar, https://www.stellar.org/. Last accessed 2017/01/14
11. The Stellar consensus protocol, https://www.stellar.org/papers/stellar-consensus-protocol.pdf.

Last accessed 2017/01/14
12. Thinking about smart contract security, https://blog.ethereum.org/2016/06/19/thinking-smart-contract-

Last accessed 2017/01/14
13. Understanding the DAO attack, http://www.coindesk.com/understanding-dao-hack-journalists/.

Last accessed 2017/01/14
14. Another bug in the ens, you can win with an un-

limited high bid without paying for it (2017),
https://www.reddit.com/r/ethereum/comments/5zctus/another_bug_in_the_ens_you_can_win_with_an/.
Last accessed 2017/03/17

15. Anderson, L., Holz, R., Ponomarev, A., Rimba, P., Weber, I.: New kids on the
block: an analysis of modern blockchains. CoRR abs/1606.06530 (2016)

16. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on Bitcoin. In: IEEE S & P. pp. 443–458 (2014)

17. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure
multiparty computations on Bitcoin. Commun. ACM 59(4), 76–84 (2016),
http://doi.acm.org/10.1145/2896386

18. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum
smart contracts. Cryptology ePrint Archive, Report 2016/1007 (2016),
http://eprint.iacr.org/2016/1007

19. Back, A., Bentov, I.: Note on fair coin toss via Bitcoin.
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf (2013)

20. Banasik, W., Dziembowski, S., Malinowski, D.: Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts. In: ESORICS. pp. 261–280 (2016)

21. Baqer, K., Huang, D.Y., McCoy, D., Weaver, N.: Stressing out: Bitcoin “stress
testing”. In: Bitcoin Workshop. pp. 3–18 (2016)

https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/OP_RETURN
https://www.dgx.io/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://github.com/ethereum/wiki/wiki/Standardized_Contract_APIs
https://lisk.io/
http://www.coindesk.com/making-sense-smart-contracts/
https://monax.io/
http://www.multichain.com/blog/2015/11/smart-contracts-good-bad-lazy/
https://www.stellar.org/
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://www.reddit.com/r/ethereum/comments/5zctus/another_bug_in_the_ens_you_can_win_with_an/
http://doi.acm.org/10.1145/2896386
http://eprint.iacr.org/2016/1007
http://www.cs.technion.ac.il/~idddo/cointossBitcoin.pdf


An empirical analysis of smart contracts 15

22. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting Ponzi schemes on
Ethereum: identification, analysis, and impact. CoRR abs/1703.03779 (2017),
https://arxiv.org/abs/1703.03779

23. Bartoletti, M., Pompianu, L.: An analysis of Bitcoin OP RETURN metadata.
CoRR abs/1702.01024 (2016), https://arxiv.org/abs/1702.01024, to appear in
Bitcoin Workshop 2017

24. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. In:
CRYPTO. pp. 421–439 (2014)

25. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Beguelin, S.: For-
mal verification of smart contracts. In: PLAS (2016)

26. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
S & P. pp. 104–121 (2015)

27. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: An introduction.
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf (2016)

28. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

29. Churyumov, A.: Byteball: a decentralized system for transfer of value.
https://byteball.org/Byteball.pdf (2016)

30. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: foundations, de-
sign landscape and research directions. CoRR abs/1608.00771 (2016)

31. Delmolino, K., Arnett, M., Miller, A., Kosba, A., Shi, E.: Step by step towards
creating a safe smart contract: Lessons and insights from a cryptocurrency lab. In:
Bitcoin Workshop (2016)

32. Dermody, R., Krellenstein, A., Slama, O., Wagner, E.: Counterparty: Protocol
specification (2014), http://counterparty.io/docs/protocol_specification/.
Last accessed 2017/01/14

33. Frantz, C.K., Nowostawski, M.: From institutions to code: towards automated
generation of smart contracts. In: Workshop on Engineering Collective Adaptive
Systems (eCAS) (2016)

34. Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M.C.: Bitcoin - asset or cur-
rency? revealing users’ hidden intentions. In: European Conference on Information
Systems (ECIS) (2014)

35. Grau, P.: Lessons learned from making a chess game for Ethereum (2016),
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178

Last accessed 2017/01/14
36. Kumaresan, R., Moran, T., Bentov, I.: How to use Bitcoin to play decentralized

poker. In: ACM CCS. pp. 195–206 (2015)
37. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts

smarter. In: ACM CCS (2016), http://eprint.iacr.org/2016/633
38. Marino, B., Juels, A.: Setting standards for altering and undoing smart contracts.

In: RuleML. pp. 151–166 (2016)
39. Möser, M., Böhme, R.: Trends, tips, tolls: A longitudinal study of bitcoin transac-

tion fees. In: Financial Cryptography and Data Security. pp. 19–33 (2015)
40. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system.

https://bitcoin.org/bitcoin.pdf (2008)
41. Nomura Research Institute: Survey on blockchain technologies and related services,

http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf

42. Popejoy, S.: The Pact smart contract language. http://kadena.io/pact (2016)

https://arxiv.org/abs/1703.03779
https://arxiv.org/abs/1702.01024
http://r3cev.com/s/corda-introductory-whitepaper-final.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://byteball.org/Byteball.pdf
http://counterparty.io/docs/protocol_specification/
https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6#.fwtdwly6e
http://eprint.iacr.org/2016/633
https://bitcoin.org/bitcoin.pdf
http://www.meti.go.jp/english/press/2016/pdf/0531_01f.pdf
http://kadena.io/pact


16 Bartoletti M., Pompianu, L.

43. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Security
and privacy in social networks, pp. 197–223. Springer (2013)

44. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Financial Cryptography and Data Security. pp. 6–24. Springer (2013)

45. Seijas, P.L., Thompson, S., McAdams, D.: Scripting smart contracts for dis-
tributed ledger technology. Cryptology ePrint Archive, Report 2016/1156 (2016),
http://eprint.iacr.org/2016/1156

46. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Financial Cryptography and Data Security. pp. 507–527 (2015)

47. Szabo, N.: Formalizing and securing relationships
on public networks. First Monday 2(9) (1997),
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548

48. UK Government Chief Scientific Adviser: Dis-
tributed ledger technology: beyond block chain,
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distribute

49. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
gavwood.com/paper.pdf (2014)

http://eprint.iacr.org/2016/1156
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/548
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
gavwood.com/paper.pdf

	An empirical analysis of smart contracts: platforms, applications, and design patterns

